
National Aeronautics and
Space Administration

NASA Technical Memorandum 107531

Micromechanical Modeling of the Finite
Deformation of Thermoelastic
Multiphase Composites

Jacob Aboudi
Tel-Aviv University
Ramat-Aviv, Israel

and

Steven M. Arnold
Lewis Research Center
Cleveland, Ohio

July 1997



NASA TM–107531       1



NASA TM–107531       2



NASA TM–107531       3



NASA TM–107531       4



NASA TM–107531       5



NASA TM–107531       6



NASA TM–107531       7



NASA TM–107531       8



NASA TM–107531       9



NASA TM–107531       10



NASA TM–107531       11



NASA TM–107531       12



NASA TM–107531       13



NASA TM–107531       14



NASA TM–107531       15



NASA TM–107531       16



NASA TM–107531       17



NASA TM–107531       18



NASA TM–107531       19



NASA TM–107531       20



NASA TM–107531       21



NASA TM–107531       22



NASA TM–107531       23



NASA TM–107531       24



NASA TM–107531       25

Figure 1.—A repeating cell in GMC consisting of Na, Nb and Ng subcells in
   the 1, 2 and 3 directions, respectively.
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Figure 2.—Comparisons between GMC and the spher-
   ical model prediction for three types of nonlinearly
   elastic porous materials under a hydrostatic loading.
   (a) Shell geometry. (b) Class I (harmonic material).
   (c) Class II. (d) Class III (generalized Varga material).
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Figure 2.—Concluded. (c) Class II. (d) Class III (gener-
   alized Varga material).
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Figure 4.—The response of a nonlinearly elastic long-
   fiber composite (SiC/Al) subjected to uniaxial stress
   loading. (a) Loading in the fiber 1-direction. (b) Load-
   ing in the traverse 2-direction.
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Figure 3.—The response of nonlinearly elastic particu-
   late composite (SiC/Al) subjected to uniaxial 
   stretching.

Figure 5.—An idealized three-dimensional structure
   of open-cell foams (a). The corresponding
   repeating cell for the modeling of the open-cells
   structure by GMC (b). 
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Figure 6.—Average uniaxial stress and average uni-
   axial lateral contraction versus average longitudinal
   extension ratio of a porous polyurethane rubber
   modeled as closed and open-cells cellular solid.
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